UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi

113 Hessert Center
AME-60639

Tel: 631-5736
Email:atassi@nd.edu

Homework 5

I. Consider a thin airfoil of chord length c, a thickness ratio $\theta=0$ and a camber ratio $m=0.05$. The airfoil camber line is a parabola. We take the line joining the leading and trailing edges as the x -axis centered at the airfoil midchord. The equation for the camber line is

$$
\begin{equation*}
z_{c}=m c\left(1-\left(\frac{x}{c / 2}\right)^{2}\right) \tag{1}
\end{equation*}
$$

The airfoil is placed in a flow with upstream velocity V_{∞} at an angle of attack α. Calculate the airfoil lift coefficient, c_{ℓ}, its moment with respect to the leading edge, $c_{m, \ell e}$, its center of pressure, $x_{c p}$, and its angle of attack of zero lift, $\alpha_{L=0}$. Compare the airfoil profile and its aerodynamic coefficients with those of a Joukowski airfoil of the same thickness and camber ratio. Plot both profiles and the variation of c_{ℓ} versus α.

